Wright Linear Regression Analysis 109

Alternative Linear Disturbance Estimators in
Linear Regression Analysis

Given the usual lincar model, Y=XB+¢, Y being an nx1 vector of values of a
resultant variable, X a fixed nxp matrix [xij] such that x;; fs the ith value of the

jth explanatory variable, B is a px1 vector of parameters ¢ an nx1 vector of errors
£~N(O.0211 and X being of rank p,p<n. Then b, thc OLS estimator of Bis b = XxX)
Ixy
Define M to be the matrix [-X(X'X)~ 1x’, which is trivially idempotent
tr(M) = tefl) - tr (X(XX)"1X)
tr(M) = tr(l,) - tr(Ip) =n-p
So the trace of M is n-p, so its rank is n-p and it has n-p eigenvalues of
unity, the rest being zero. The vector of residuals is
_e=Y-Xb=Y-XXX)1XY=MY
e =MY .So ¢ =MXpB +Me
ButMX =0
e=MY = Me
Regression analysis in common with much other statistical analysis (such as
ANOVA) uses the residuals as cstimators? of the true disturbances in a battery of
testing procedurcs. Ience it is important to examine the properties of those
residuals and, where they are in any sense unsatisfactory, to consider
alternatives. This study is motivated by the fact that even given homoscedastic
serially uncorrelated errors with a fixed dispersion matrix as in this model, the
residuals follow a hcteroskedastic, autocorrelated data dependent distribution as
is seen from the result below
e=Me
So e is normal and unbiased
Efee) = E(Mee'M)
= o2MM’
V(e) = 02M
e ~ N(0,62M) where M is data dependent and not generally scalar. In
this paper lengthy proofs are not given but marked by an asterix. The proofs have
been submitted to the review and are available from the author or the editor.
However the least squares residual vector is the best linear (in Y) unbiased
residual vector. Let j be any other residual vector AY
E(AY) =0 = AXB + E(g) = 0 = AX = 0 and AY = As
LetA=A*+M
\o(\o(Z, 1), ) = \o(Z. NI(-e)j-€)1 2
=\o(Z, Nl{A-Dee’(A-I)]
= o2(A-D(A-])
= 62(A*+M-D)(A*+M-I)
= 02(A*+X(XX)" 1X) (A% +X(XX)1X)
= 02A%A* + 02X(X'X)"1X, because A*X = AX - MX = 0
\o(Z, 1)()) = 62A*A* + o2
Fore, A=Mso A* =0 so \o(Z,l)e) = o2(1-M)
So as A*'A* is symmetric and hence positive semidefinite. \o(Z, |){e) exceeds
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\o(Z, )(j) by a positive semidclinite matrix for any j and the result is hence
proven.

The class of alternative disturbance estimators is the set of residuals which
are linear in Y. unbiased and have scalar fixed dispersion matrices. Such vectors

are written as CY where C is of order gXn. A necessary and sufficient condition

for such a vector to be unbiased is that CX=0 because

E[CY]=0=E[CXB+Ce]=0=CX=0
Let D be the fixed scalar dispersion matrix. Without loss of generality let D =

621 (because this can be achieved by scalar multiplication of C). It is a necessary
and sufficient condition for \o(E, 1}ICY] to be 021, that CC' = I, because
E[CYY'C] =621 = Co2C" = 62l = CC" = |
An important result for LUS residuals is that CY = Ct - Ce as may thus be
shown:

CY = C[XB+¢]

= CY=Ce

= MC' = [l - X(xX) lx]C
ButXcC' =0

= MC' =C

=CM=CM =C

= CY = CMY

= CY =Ce =Ce
The fact that CX = 0 implies that the n columns of C are subject to p linear
dependencies. So
rank[C] = n-p
rank([C}] = rank[CC’]
rank[CC'] < n-p
But CC’ =1, of order gXq of full rank
rankll] = rank[CC] = q
qs<n-p
It is clearly desirable for the number of rows of C to be as close as possible
to n-p. This result tells us that q is at most n-p, not that this maximum can be
obtained. M has n-p eigenvalucs of unity, the rest being zero. Let 41-9p-p be the

eigenvectors corresponding to the unit eigenvalues. If C is an n-pxp matrix, the
rows of which are q1---9n-pr then CY is a LUS residual vecior. This result hence
shows that the maximum can be obtained. It is proven thus
M-)C’ =0
= XXX)lxc =0
=CX=0
CY is linearin Y
CY=Ce
VICY) = V(Ce)
=E{Cee’'C1]
vicY] = 62cMC
But C orthogonally diagonalises M and the eigenvalues of M corresponding
to the columns of C’ are all unity.
VICY] = 621
So CY is a vector of LUS residuals. The rows of C arc clearly pairwise
orthogonal and of length 62 in this case.
Since the maximum number of rows of C, n-p, can always be attained we
always choose C to be of order n-pxn. For p observations there are no LUS
residuals, this operation is defined as the base.
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It is logical then to proceed to attempt to derive a LUS residual veclor
satisfying certain optimality conditions. One of the widely used classes of LUS
residuals, the BLUS residuals of Theil {1965,1968) satisfy such conditions.
Consider the partitioning of X as [Xg!X}] where Xg represents those rows

corresponding to observations in the base, e being correspondingly partitioned.
Let the eigenvalues of XO(X'X)'IXO‘ be written in order of increasing magnitude
r " as
2 2 2
di%<dg® ... < dP
and let qj be the ith eigenvector of (XIXO'I)(X1X0'1)‘. Then the BLUS
i residual vector is
’ uj=ej- X1XO'1( \\su(i=1,h\s(2},) \fd;1-d)) qjqi’)eo
which, it may be proved*
‘ {i) is a LUS residual vector.
(i} is unique )
(it} minimises the expected sum of square errors, 1.e. il vy is any cstimator of.
g}, Ellvy - e))'lvy - e])l 2 El{u) - e1)'(u] - €1)], this property being known as weak

optimality.
An attempt was made in Theil(1968) to show strong optimality, i.e. that
\o(Z, N{v]) 2 No(E, 1}{u} for all vy, an estimator of ¢1. The proof is not generally

correct; it entafls an addcd constraint on vj. Grossman and Styan {1970)
disproved strong optimality for BLUS residuals. While weak optimality implics
that

tr\o(Z, 1}(v )] 2 trl\o(Z, )u )l

because strong oplimality is not a property of BLUS residuals, we cannot

cven be sure that the diagonal elements of \o(Z,1){u;) do not exceed the
corresponding elements of \o(Z,1)(vq), for some vj. If Xj[A] is the jth largest
eigenvalue of A, Grossman and Styan (1970) did show that

Xj[\O(Z, Nvlz lj[\O(Z. Ny *

but this is little more than a mathematical curiosum.
The weak optimality condition applies only, however, to LUS residuals. By

the result given carlier, if aj is any vector of cstimators of €1, \o(Z,1)(a]) 2
“\o(Z, )(e}). So ES(a)) 2 ES(e]). A convenient scalar measure of the difference
between these two quantitics is the ratio of ES(e) o ES{a;} which Abrahamse
and Koerts (1970)define as the efficiency of aj. The efficiency of uj is

\F(\I\SU(l:1.h,(1—dF)),:Z\l\SU(i:l,h,(l-di))) , as may be shown thus

\o(Z, Nuy) = 262\i\sufi=1,h,(1-d)) pipi» writing in scalar format, since dj =
1 for all i>h

ES(uy) = tr(u}) = 262\i\su(i=1,h,(1-dy)

\o(E, Nley) = 02 X, (XX)"1xy’

ES(e) = 62 tr\o(E, Diey)l
=02 trlX; (XX)"1X 1 = 62 tr{(XX)"1X X )]
=02 (XX KX - X'gXo)l
=02p - o2 (N}

= ES(e}) = 62 \i\su(t=1,h,1-d{?)
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= \f(ES(e1),ES(u;)) = \f\i\suli=1,h, 1-d12),2\i\su(i=l.h,(l-di)))
Implicit in any vector of disturbance estimators is a vector of coefficients
estimators. For uj, this is B*] such that up =yj X%

up=e)-X)Xo M\\su  (i=1,h,\f{d; 1-dy) qiqy] e,
up=Yp - Xb + X Xp N\i\su  (i=1,h,\fld; 1-dy)) qq;] e,

X181 =X1b + X1Xo U\M\su  (I=1,h,\fid; 1-dy) quqy] e,
=p'1=b + X Xo I\i\su  (1=1,h,\Mldy 1-d)) qyq;l e,

Trivially, E(B‘l) = B but \o(E,‘I)(ﬁ‘l) 2 \o(Z, l){bj) by the Gauss-Markov
Theorem.
All this analysis of BLUS residuals is however dependent on the choice of

base. Ignoring the nonsingularity requirement for X,, there are ACy possible

choices of base. The approach to the use of residuals suggested by Theil (1968) is
to first of all identify the set of all possible bases and then to select that one
which minimises the expccted error sum of squares. If the sct of all possible
bases is the set of all bases for which X is nonsingular, then the computational
cost of this will be very high, but for many applications, other constraints will
exist (e.g. that the base must be in the centre of the ordered predictors). The
large number of possible bases is one general objection to the BLUS procedure.
Another fundamental one {s the fact that the dispersion matrix of the BLUS
residual vector exceceds that of the least squares one by a positive semidefinite
matrix. Finally, p observations have no BLUS residuals. The second of these is
probably the most serfous because computational advances lessen the first
problem and because n is typically much greater than P- A measure of the gravity
of this problem is the efficiency of the BLUS residual vector.

The recursive residual vector is another member of the class of LUS residual
vectors. Let b(r),X(r),y(r) be b, X and y with only the the first r observations, >p.

The rth recursive residual is defined as

Pr= \f(yr-X‘(r)b(r_1),\r(1+x‘r(X'(r_l)X(r_l))'lxr)) +re{p+l....n}
The computation of recursive residuals is greatly simplified by the result
[proved in Harvey(1981)]

KX = KX ) - MO )X (e 1) X e )X )"
L 0 )X 197 1)

which means that only one matrix inversion 1s needed to compute a whole
set of recursive residuals. Hence, as is shown in Brown, Durbin and Evans(1975)

br=b. 1+ ()(‘(‘.)X(r))'lxr(yr - X'tbr.j), this being the explicit recursion
formula used to compulte Wpepeee: wp}

Parallel to the problems of BLUS residuals, recursive residual vectors have
variance-covariance matrices exceeding those of the corresponding least squares
ones by a positive semidefinite matrix and that the first p observations have no
recursive residuals.

A generalisation of the LUS class of residual vectors is the LUF class. These
are disturbance estimalors which are linear in Y, unbiased and which have

dispersion matrices 02Q which are not data-dependent and which arc hence
fixed. But it is clearly desirable that certain properties of 62Q mirror those of

o2M. Following Abrahamse and Koerts (1971), Q is required to be idempotent
and of rank n-p.
Let M(X) be the space spanned by the columns of X and let v be a LUF
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residual vcctor.‘ Y'Y, ¥ being of order n-pxn-p, So

EMY}=0=>¥X=0

So the columns of ¥ are elements of M{X)’, the orthogonal comnplement of
M(X). By the dimension theorem, if T is a linear transformation from the vector
space V to the vector space W then the sum of the rank and nullity of T is equal
to the dimension of V. Hcncee the sum of the rank of ¥ and the dimension of the
solution space of ¥’X=0 is n, so the dimension of M(X)' is n-p. Besides, clearly,

E(w) = EWyy¥) = 62¥'Y = 62Q = ¥¥'=Q

Let K be that nxn-p matrix the columns of which are the cigenvectors
corresponding to the unit eigenvalues of Q and let P be that nxn-p matrix the
columns of which are the cigenvectors corresponding to the unit eigenvalues of
M. Then Abrahamsc and Kocrts show that the residual vector

KIKMK] M L2) gmy

is a LUF veclor satisfying weak optimality, and that it is unique.

Consider a rcformulation of the OLS model in which A is an nxn-p matrix of
rank n-p the columns of which span M(X)'. Xb must be an element of M(X) in

OLS. But Xb is an ¢lement of M(X) iff A’Xb=0. Defining A as a column vector of n-
p Lagrange multiplicrs the cstimation of b in OLS can be reformulated as the
constrained optimisation of the minimisation with respect to B of {y-XB)(y-XB}
subject to A’XP=0, cquivalent to the Lagrangian minimisation of (y-XB)'(y-XB)-
20A'XB, the solution being b, \o(k,'\). By Harrison and Keogh(1984)

Xb=[I - AAA) 1ATXB, ‘o, V= (A'A) 1A%Y, \o(r,)~N(0,02(a'A) 1)

As \o(?».'\) is linear in y, unbiased and has a fixed dispersion matrix, it has
an interpretation as a set of LUF residuals. Letting A=D(D'D)‘1 \o(,R,A)= ((D'D)'1
ppED) Y1 (OD) DY = DDOD) ! DY =D'. So, any LUF residual vector may
be gencrated in this way and so any LUS residual vector may too provided that
A’A=].

The process of finding LUF residual vectors differs very fundamentally from
that for LUS residuals. The matrix P is data dependent. For generating LUF
residuals in a particular set of analyses we must specify typical matrices such
that for any one application this will be a good approximation. Since P is a basis
for M(X), finding a typical P matrix is equivalent to finding a typical X matrix.
Once the typical X matrix has been specified for any field, then given the
nonsingularity of K'P, v is uniquely determined. The issuc of choice of base does
not even arise.

A typical X matrix is not necessarily given however. Intuitively, indced this is
likely to be quite unusual. But one case where it docs exist is for slow trending
time series which Theil and Nagar (1961) argue is quite common. X, in this case,
can be approximaled by the eigenvectors of the matrix A '[CM_]] which is of order

nXn, where
g = 2 for all i ¢{2,....n-1}, q;; =1 for 1 ¢{1,n} and qij=-l for all 1,j such that |i-

jI=1; all other elements of the matrix being zero.

This is becausc the eigenvectors of A have a “slowly changing” character, so
X may behave like the eigenvectors of A. P is a matrix of eigenvectors of M
corresponding to the unit eigenvalues of M, so it spans the orthogonal
complement of the space spanned by X, because as has been shown KP'X=0. So
P behaves like the eigenveclors corresponding to the n-p largest eigenvalues of A.
Let the matrix, the columns of which are these eigenvectors be L, of order nxn-p.
1t follows that it is rcasonable to choose L for the malrix K, and Q is thus LL'.

Von Neumann (1941) showed that the eigenvectors of A are given by hy =
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\{1,¢;) [Cos\(r(i-1),2n) , Cos\{(3n(i-1),2n) ,...... ,Cos\{((2n-1)r{i-1),2n)]
¢y =\r(n), ¢f = \r(\Mn,2)) for all 1 &{2....n}

corresponding to the cigen values 2[1 - Cos \f{r(i-1),n) ], { e{l.....n}. L is
hence [hp+1 ........ hyl .*

The theory of LUF residuals however relies on Q being determined a prior
and so the typical 3 matrix must be too. This is the major limitation of LUF
residuals. A typical X matrix may not exist in a given ficld of learning. But, more
critically, the fact of the typical X matrix being determined a priorf means that the
analyst may not be inflluenced by the extent to which his X matrix satisfics the
requirements to be “typical” in the given field of learning without undermining
the statistical validity of the procedures. If he finds that the X matrix is
completely different from that which he expected, ex.ante, if he modifies his
beliefs about what X matrix is “typical® in that field of learning, then it can no
longer be assumed that Q is fixed and the theory of LUF restduals breaks down.

Given the central role of disturbance estimators in econometric specification
and misspecification testing, alternative disturbance estimators can clearly be
applied to a battery of testing procedures including tests for heteroskedasticity,
serial correlation, concavity, convexity, general non-linearity or structural change
over time, .as well as to misspecification tests. Length being constrained, not all
these applications can be examined.

Exact parametric tests of heteroskedasticity, using LUS residuals, were
proposed by Theil (1971) and Phillips and Harvey (1973), the former using BLUS

residuals, the latter employing recursive ones. If g2 = Var(rj) = czf(j) then the
null is that {{}) is unity for all j and H A is that there exists some j such that f{j) #

1. For power studies, writers have confined themselves to more restricted forms
of heteroskedasticity.

Let the observations be ordered in non-decreasing values of 021 ,» according

to an alternative hypothesis. Let a regression be run on the first and last m
observations, 2m<n |2m<n, for n odd], yielding residual vectors e] and €g

respectively. The Goldfeld-Quandt test statistic is

R = Mle'geg,e'1e) = \le'Ege,e'Ee) , where E9 = \b{\a\co2(0 ,0,0 dm))
where E| = \b(\a\co2(lm ,0,0 ,0)) , where I 1s the identity matrix of order
mXm.

= R =\[eM'EqMe,e M'E M)

LBut M'EgM and M'EjM are trivially idempotent

= e'geg ~02x2m. c'e 1"’0212m

¢'1e] and e'geq are independent

R~Fmm

Testing may hence be conducted. Discarding central obscrvations has been
found to increase power, for example by Phillips and Harvey.

The procedures of Theil (1971) and Phillips and Harvey (1973) adapt this test
for LUS residuals, represented by a vector w. As the discarding of the central
observations increases power, it follows that, for n-p even the central P
observations be used as the base and for n-p odd, one of the two posstble sets of
central p observations be used. In this way the disadvantage of LUS residuals
(that observations in the base do not have corresponding residuals) can be
mitigated. Phillips and Harvey (1973, 1974) allow for the possibility of discarding
more observations than are in the base: thereby increasing the number of
possible bases. In the context of computationally expensive BLUS residuals this
seems unlikely to be desirable, so Theil (1968, 1971) does not allow for this: the
more possible bases we consider the greater the computational cost. Thcil then
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suggests that a BLUS residual vector be computed for each [one or two]
admissible base, the one with the lower expected error sum of squares being
selected. In this paper, the approach of Theil is initially followed, so two
regressions are run; one on the observatons before the base [p elements] and one
on the observations after it, yielding LUS residual vectors w} and wo respectively.

The ratio for either BLUS or recursive tests is then
S= \f(W2'W2,W1'W1)
depending on whether \f(w(,wg)are BLUS or recursive residual vectors.

Clearly wo'wg ~ ozx2n,w1‘w1 ~ °2X2m- where w| and wy are of length m and n
respectively.

E[WI'W21=O

wo'wg and wi'w] arc independent, because

S~Fn,m

and so testing may be conducted by comparison with the critical values of
an Fp, i, variate.

Harvey and Phillips (1974) is an important discussion of the relative merits
of these three tests. The BLUS residuals have the least expected sum of squared
estimation errors, but there is no theoretical reason why this should imply that a
test based on them will be most powerful. The recursive residuals, on the other
hand, are easier to obtlain. Harvey and Phillips claim that tests based on
recursive or BLUS residuals are more flexible than the Goldfeld-Quandt test as
recursive or BLUS residuals may be used with different orderings of the
observations, while least squares residuals may not. They however provide no
theoretical or empirical support for this claim. Changing the order of
observations changes the sct of admissable bases; but if one set of LUS residuals
is used with different orderings of the bases, then only the base in the first test
will necessarily bc admissable. Even if other bases are, by chance, admissable,
the BLUS residual vectors they yield will not necessarily satisfy weak optimality.
It seems plausible, hence, that using different ordcrings without fresh bases may
cause a loss of power, and the phenomenon may hence merit further study.
Harvey and Phillips use the procedure of Imhof (1961) to compute the power of S
under various altcrnative hypotheses. The procedure enables this to be done
exactly, since S is a quadratic form in random normal variables. They drew the
following key conclusions.

(i) For designing the most powerful test it is optimal to discard around max
{p,\f(n,3)) central observations, this optimum being relatively flat.

(1) The tests based on BLUS residuals dominate those based on recursive
residuals in power, but the diffcrence is very small and probably does not justify
the extra computatonal cost of the former. :

(iif) All conclusions are quite robust to the specification of the
heteroskedasticity.

{iv) No overall conclusion may be drawn as to the rclative power of those
tests and the Goldfeld-Quandt test.

Ramsey (1969} discusses a number of specification tests involving LUS
residuals. Only one is claimed to be sensitive to simple heteroskedasticity. This is
essentially a special case of Bartlett's M Specilication Error Test [BAMSET].
Defining Z}.Zn-p 1o be the coordinates of a veclor of LUS residuals, z, the set of

n-p LUS residuals is divided into t non-intersccting subsets, such that the
residuals in the jth sct have a sum of squares L_] and Nj clements arc in this set.
Define

s2j=\1lL;.N;). s2 = \M\i\su(=1tNjs;2n-p) , jell.....t}

The null specificd by Ramsey is that z2j ~ 02y2 1> Je{l.oon-p} while Hp is
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212~012x2 1» with Gj2 not equal for all j, He shows that the test statistic

n-p log s2 - \1\su(j=1,t,leog s2 j) ~-x2t_1,
and testing may hence be conducted. Unfortunately the power of this test

may not be computed using the method of Imhof (1961). The specification of the
null and alternative hypotheses is significantly different from that used by other

writers and has the disadvantage that, as many misspecifications imply 221 to be
distributed as non-central x2, the test is not defined for these cases. Ramsey
(1969) notes that this is the case if there is functional misspecification or

underspecification.
Brown, Durbin and Evans (1975) propose a test for structural change over

time based on recursive residuals. Formally, the null is that B and o2 are
constant over time, and Hp, is that they are not (although a variety of one-sided

procedures could be devised if desired). Let the set of recursive residuals be

{vt},tefptl....n}). Two alternative statistics may then be computed, known as the
cusum and cusum squared test statistics,

Wi = \M(\M\su(t=p+1,j,v),\\su(t=p+1,n,v,2)) and s; =
\ﬂ\i\su(t=p+l,j,vt2),\i\su(t=p+1,n,vt2))

respectively, for the jth observation. Consider a plot of wj against j. Under
the null, over time, it should be close to zero. Applying the theory of Brownian

motion in statistical mechanics they showed that there is an a% probability that
some point will be above line A or below line B, under the null where line A goes

through the points (p.+fla)\r{n-p)) and (n,3fla)\r(n-p)) and line B goes through

the points (p.-fle)\r{n-p)) and (n,-3f[e)\r{n-p)). Valucs for flo) were computed;
notably f{0.05) = 0.948. A diagnostic test may thus be devised which rejects the
null if some portion of the plot is above line A or below line B, By simple geometry

the equations of lines A and B may be deduced as w; = fle)\r(n-p) + \f[2fla)(t-
p\r(n-p)} and wi = -floj\r{n-p) - \r(2f(a)(t-p).\r(n-p)) respectively. The approach

for the cusum of squares test ts similar, but based on a slightly different
rationale

\i\su(t=p+l,j,vt2) ~ ij-p = \i\su(t=p+1,n,vt2)~ in-p

== \flx),x]x9) such that x1~x21_p, x2~12n_1

= 8j~ B(-p.n-}), following Rao (1973).

Rao observes that for a Blp,q) variate, it has an cxpectation of \flp,p+q). It
follows that E(sj) = \{j-p.n-p). So, if we consider a plot of sj against j it should be

close to a line going through \[[j -p.n-p) for all §, known as the mean value line. By
simple geometry, the equation of the mean value line is, hence
st = \f{t-p,n-p)
Brown, Durbin and Evans (1975) show that for any required significance
level, o, the probability that the plot crosses either or both lines

st=\{t-p,n-p} £ C,(d)

Is equal to a. They tabulatc values of Co and so a diagnostic test may hence
be deduced. It could in principle be extended to other LUS residual vectors, the
problem becoming statistically more difficult, however. Garbade (1977) in
statistical simulations concluded that the cusum of squares test was more
powerful than the cusum test and that not even the former is very powerful
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against changes in 8.

A final application of alternative disturbance estimators, which uses LUF
residual vectors, is to computing the distribution of Von Neumann ratios. As the
Von Neumann ratio is a linear transformation of the Durbin-Watson test statistic,
this could either be regarded as an appplication to either misspecification or
serial correlation testing. The exact distribution of the Von Neumann ratio for
least squares residuals is data dependent although, given a particular X matrix,
it may be computed exactly.

Given a vector of LUS residuals, the distribution of the corresponding Von
Neumann ratio may be computed exactly. For n-p BLUS residuals the Von

Neumann ratio is Q = \f(\i\su(d=2.n-p.(u1a-ula_l)z).(n-p-l)cl'el) =
\f{u'1Auy,(n-p-)e e}y where A is the appropriate elementary matrix. Press and

Brooks (1969) derived significance limits of @ for n-pe{2...60}, and showed that
asymptotically, @~N(2,\{(4,n-p)), an asymptotic approximation valid for n-p at
least around 60. Hence one may test for serial correlation as proposed by Theil
(1971).

It is in this application that writers such as Abrahamse and Louter (197 1)
would tend to argue that LUF residual vectors are especially appropriate. The
difficulty tn computing Von Neumann ratios lies in data-dependency not in
whether the dispersion matrix of disturbance estimators is scalar or not. Since
the BLUS residual vectors satisfy weak optimality in a more restricted class than
the LUF residual vectors of Abrahamse and Koerts (1971) it seems plausible that
using LUF residual vectors will entail a gain in power, although the formal
justification for this claim relies on Monte Carlo simulations. Besides, given a
typical X matrix for a certain field, LUF residuals are uniquely determined, unlike
BLUS residuals. Given a time series where differences are small by comparison to
the level predictor variables, LUF residuals may be derived by the procedure
referred to. In this case, where A is as defined in the section on LUF residuals the
Von Neumann ratio is @' = \f[v'Av,v'v) Let 11'""ln-p be the eigenvalues of K'AK.
Then Koerts and Abrahamse (1969) show that Q’=\f(\i\su(i=1,n-
p.ligiz),\l\su(i=l.n-p.gi2))'where ¢=(g1---- gn_p), g-—N(O,o2I). Let Q be the
orthogonal matrix the columns of which are the eigenvectors of A. By orthogonal
diagonalisation

D=diagld1.....0,}=Q’AQ, where 91.....0p, are the eigenvalues of A.

=A=QDQ’

=K'AK=K'@D@'K

But @ is the matrix th}...hy], K is the matrix [hp,j....... h,l and h;...h, are
of unit length and pairwise orthogonal. So K'Q:[O(““P)(P)I(n_p)] where d(n'P)(P) is
of order n-pxp and Itn-p) 1s of order n-pxn-p, being zero and identity matrices
respectively.

= K'AK = [0(0Plg) 11 o)) D \BOAOEP) ) 1, o))

= K'AK = \b(\A\CO2(O(p).O(n-p).O(n-p)-J)) where J is diagldp, 1 ---.-dnl

=2Q = \f(\l\su(i:p+l.n.dlglz),\l\su(l=p+l,n.giz))

This is the Durbin-Watson upper bound dy;, apart from the multiplicative

constant. Durbin-Watson tests may hence be conducted. This result also
provides some explanation for why statistical simulations have tended to suggest
that the actual distribution of the Durbin-Watson test statistic is closer to d;

thand,.
Abrahamse and Koerts (1971) ran some statistical simulations to compare
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the power of this procedure with the BLUS one in scrial correlation with slow
trending time series. The former dominated the latter in power. The strength of
the argument for the LUF test that follows from this is clearly however greatly
blunted by the necd in this procedure to find a typical X matrix and hence a

suitable Q matrix. The procedure breaks down if one cannot be found. As the

theory of LUF residuals is bascd on Q being fixed a priori it follows that the
typical X matrix must be fixed in advance. This may be a quite unreasonable
requirement, and so the alternative approach based on BLUS residuals may be
preferred.

Jonathan Wright

Notes
(1) The term estimator is used here in a nonstandard way, not to estimate a
parameter in a probability distribution but to estimate a value taken on by a

random vector, €.
{2)The variance-covariance matrix of a, a vector of estimators of a random vector

¢ is ‘defined as \o(X,1)(a), El(a-g){a-€)']. This is again a non-standard practice,
following logically however from (i). The matrix El(a-E{a))(a-E(a))] is terined the
dispersion matrix of a, V(a).
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