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Given the usual linear model, Y=Xj3+£, Y being an nxl vector of values of a 

resultant variable, X a fixed nxp matrix [xij) such that Xij is the ith value of the 

jth explanatory variable, p is a px 1 vector of parameters £ an nx 1 vector of errors 

£-N(O,cr21) and X being of rank p,p<no Then b, the OLS estimator of P is b = (X"Xr 
lX"Y 

Define M to be the matrix I-X(X"X)-lX", which is trivially idempotent 

triM) = trO) - tr (X(X°X) -1 X") 
triM) = trOn) - trOp) = n-p 

So the trace of M is n-p, so its rank is n-p and it has n-p eigenvalues of 
unity, the rest being zeroo The vector of residuals is 

e =Y - Xb =Y - X(X"X)-IXY = MY 

e = MY 050 c = MXj3 +M£ 
ButMX =0 

e=MY=Mc 
Regression analysis in common with much other statistical analysis (such as 

ANOVA) uses the residuals as estimators l of the true disturbances In a battery of 
testing proeedureso Hence it is important to examine the properties of those 
residuals and, where they are in any sense unsatisfactory, to consider 
alternativeso This study is motivated by the fact that even given homoscedastic 
serially uncorrelatcd errors with a fixed dispersion matrix as in this model, the 
residuals follow a hcteroskedastle, autocorrelated data dependent distribution as 
is seen from the result below 

e=M£ 
So e is normal and unbiased 

E(ccO) = E(Mu:oMO) 

= cr2MM' 

Vie) = cr2M 

e - N(O,cr2M) where M is data dependent and not generally scalaro In 
this paper lengthy proofs arc not given but marked by an asterixo The proofs have 
been submitted to the review and are available from the author or the editoro 

However the least squares residual vector is the best linear (in Y) unbiased 
residual vectoro Let j be any other residual vector AY 

E(Ay) = 0 ~ AXj3 + E(c) = 0 ~ AX = 0 and AY = At 
Let A =A· + M 

\o(\o(I, I), 1)0) = \o(I, 1 )[0-£)0-£)') 2 

= \o(I,I)[(A-I)u:O(A-I)) 

= cr2(A-I)(A-I)" 

= cr2(A·+M-I)(A·+M-I)" 

= cr2(A"+X(X°X)-1X")(A·+X(X"X)-1X")" 

= cr2A·oA" + cr2X(X"X)-1X", because A·X = AX - MX = 0 

\o(I, 1)0) = cr2A" 0A" + cr2 

For e, A = M so A" = 0 so \oCL,I)(e) = cr2 (I-M) 
So as A"OA· is symmetric and hence positive semidefiniteo \oCL,I)(e) exceeds 
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\o(L. I )0) by a positive semidefinite matrix for any j and the result is hence 
proven. 

The class of alternative disturbance estimators is the set of residuals which 
are linear in Y. unbiased and have scalar fixed dispersion matrices. Such vectors 
are written as CY where C Is of order qXn. A necessary and sufficient condition· 
for such a vector to be unbiased is that cx=o because 

E[CY) = 0 ~ E[CX/3 + CEI = 0 ~ cx = 0 
Let D be the fIxed scalar dispersion matrix. Without loss of generality let D = 

cr2 j (because this can be achieved by scalar mUltiplication of Cl. It is a necessary 

and sufficient condition for \o(L. I HCy) to be cr2j. that CC' = j. because 

E[CYY'C) = cr2 j ~ Ccr2C' = cr21 ~ CC' = I 

An important result for LUS residuals is that CY = Ct . Cc as may thus be 
shown: 

CY= C[X/3+c) 

~ CY= Ct 
~ MC' = [I - X(X'X)-IX')C' 
ButX'C' = 0 

~MC'=C' 

~CM=CM' =C 

~CY=CMY 

~ CY= Cc = Ce 
The fact that CX = 0 implies that the n columns of C are subject to p linear 

dependencies. So 
rank[C) = n-p 
rank [C) = rank[CC') 
rank[CC') ~ n-p 
But CC' = I. of order qXq of full rank 
rank[I) = rank[CC') = q 
q~n-p 

It Is clearly desirable for the number of rows of C to be as close as possible 
to n-p. This result tells us that q is at most n-p. not that this maximum can be 
obtained. M has n-p eigenvalues of unity. the rest being zero. Let ql .. qn-p be the 
eigenvectors corresponding to the unit elgenvalues. If C is an n-pxp matrix. the 
rows of which are q 1"'CJn _po then CY Is a LUS residual vcci.ur. This result hence 
shows that the maximum can be obtained. It is proven thus 

(M-I)C' = 0 
~ X(X,X)-IX'C' = 0 

~CX=O 
CY Is linear in Y 
CY=Ce 
V(Cy) = VICe) 

=E[Cee'C') 

V[CY) = cr2CMC' 
But C orthogonally diagonalises M and the eigenvalues of M corresponding 

to the columns of C' are all unity. 

V[CY) = cr21 
So CY is a vector of LUS residuals. The rows of C arc clearly pairwise 

orthogonal and of length cr2 in this case. 
Since the maximum number of rows of C. n-p. can always be attained we 

always choose C to be of order n-pxn. For p obscrvations there are no LUS· 
residuals. this operation is defined as the base. 



Wrighl Linear RegressIon Analysis III 

It is logical then to proceed to attempt to derive a LUS residual vector 
satisfying certain optimality conditions. One of the widely used classes of LUS 
residuals, the BLUS residuals of Theil (1965,1968) satisfy such conditions. 
Consider the partitioning of X as [XO 1 X 11 where Xo represents those rows 

corresponding to observations in the base, e being correspondingly partitioned. 

Let the eigenvalues of XO(X'Xr 1 Xo' be written in order of increasing magnitude 

as 
d 1

2::; d 2
2 ........ ::; d p

2 

and let qi be the ith cigenvector of (XIXo-l)(X1XO-1)'. Then the BLUS 

residual vector is 

ul =Cj -X1XO- 1( \I\su(i=l,h\s(2),) \f{di,l-d j ) qiqi')eo 

which, it may be proved· 
(i) is a LUS residual vector. 
(ii) is unique 
(iii) mipimises the expected sum of square errors, 1.e. if VI is any estimator of. 

El' E[(vl - (1)'(vl - C III ~ E[(u 1 - Cl)'(u 1 - EIll, this property being known as weak 

optimality. 
An attempt was made in Theil(1968) to show strong optimality, 1.e. that 

\O(L, I)(vl) ~ \o(L,I)(u 1) for all VI, an estimator of Cj. The proof is not generally 

correct; it entails an addcd constraint on VI' Grossman and Styan (1970) 

disproved strong oplimality for BLUS residuals. While weak optimallty implies 
that 

tr[\o(L,I)(v III ~ tr[\o(L I)(u 1)1, 

because strong optimality is not a property of BLUS residuals, we cannot 
even be sure that the diagonal elements of \o(L I)(u 1) do not exceed the 

corresponding elements of \O(L, 1 )(v1). for some VI' If Aj[Al is the jth largest 

etgenvalue of A, Grossman and Styan (1970) did show that 

Aj[\o(L, I)(v III ~ "-j[\O(L, I)(u III • 
but this is little more than a mathematical curiosum. 
The weak optimality condition applies only, however, to LUS residuals. By 

the result given earlier, if al is any vector of estimators of El, \o(L I)(al) ~ 

\o(L,I)(el)' So ES(al) ~ ES(el)' A convenient scalar measure of the difference 

between these two quantities is the ratio of ES(eI) to ES(al) which Abrahamse 

and Koerts (1970)define as the effiCiency of a l' The efficiency of u I is 

\F(\I\SU(i=l,h,(1-d j
2)),2\I\SUU=I,h,(1-di))) ,as may be shown thus 

\0(L,I)(u1) = 202\i\su(!=I,h,(1-di)) PiPi', writing in scalar format, since d i = 

1 for all i>h 

ES(u 1) = tr(u 1) = 202\i\SU(I=I,h,(1-di)) 

\o(L,I)(e I) = 02 X I (X'X)" I X I' 

ES(Cj) = 02 tr[\O(L, I)(c III 

= 02 tr[X I (X'X)" 1 X 1'1 = 02 tr[(X'X)" IX I'X 11 

= 02 tr[(X'X)" I(X'X - X'oXoll 

= 02p _ 02 tr(N" 1) 

=> ES(e1) = 0 2 \i\su(I=I,h,l-di
2) 
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~ \f(ES(el).ES(u III = \f(\i\su(i=I.h.l-di
2).2\i\sU(i=l.h.(l-di))) 

Implicit in any vcctor of disturbance estimators is a vector of coefficients 

estimators. For uI. this is P·l such that uI =Yl -XIP·l 

uI =el- X lXo- I [\i\SU (i=I.h.\f(di.I-dill qiqi'] eo 

u 1 = Y 1 - Xl b + Xl Xo -1 [\t\su (1= I.h. \f(di.I-di)) qtqi'] eo 

XIP\ =Xlb + XlXo-I[\i\sU (i=I.h.\f(di,l-dJ) qiqt'] eo 

~ p. 1 =b + Xl Xo -1 [\i\su (i= I.h. \f(di.I-dill qiqi'] eo 

Trivially. E(P·I) = P but \o(I. I Hp· 1) ~ \o(I. I Hb 1) by the Gauss-Markov 

Theorem. 
All this analysis of BLUS residuals is however dependent oh the choice of 

base. Ignoring the nonsingularity requirement for XO' there are nCk possible 

choices of base. The approach to the use of residuals suggested by Theil (1968) is 
to first of all identify tile set of all possible bases and then to select that one 
which minimises the expccted error sum of squares. If the sct of all possible 
bases is the set of all bases for which X is nonsingular. then the computational 
cost of this will be vcI)' high. but for many applications. other constraints will 
exist (e.g. that the base must be in the centre of the ordered predictors). The 
large number of possible bases is one general objection to the BLUS procedure. 
Another fundamental one is the fact that the dispersion matrix of the BLUS 
residual vector exceeds that of the least squares one by a positive semidefinite 
matrix. Finally. p observations have no BLUS residuals. The second of these is 
probably the most serious because computational advances lessen the first 
problem and because n is typically much greater than p. A measure of thc gravity 
of this problem is the efficiency of the BLUS residual vector. 

The recursive residual vector is another member of the class of LUS residual 
vectors. Let b(r).X(r).Y(r) be b. X and y with only the the first r observations. r>p. 

The rth recursive residual is defined as 

Pr = \f(yr-X'(r)b(r-I).\r(1+X'r(X'(r-l)X(r-I)rlxr)) • re {p+l.. .... n} 
The computation of rccursive rcsiduals is greatly simplified by the result 

[proved in HaIvey(I98 1)] 

(X'(r)X(r»-I = (X'(r_IjX(r_I»"I - \f((X'(r_IlX(r_Ij)"Ixrx'r(X'(r_I)X(r_Ij)" 

I.l+x'r(X'(r_I)X(r_l»-I xr) 
which means that only one matrix inversion is necded to compute a whole 

set of recursive residuals. Hence. as is shown in Brown. Durbin and Evans(1975) 

b r = b r -l + (X'(r)X(r»-Ixr(Yr - x·rbr - I ). this being the explicit recursion 
formula used to compute {wp+I ....... wn} 

Parallel to the problems of BLUS residuals. recursive residual vectors have 
variance-covariance matrices exceeding those of the corresponding least squares 
ones by a positive scmidefinite matrix and that the first p observations have no 
recursive residuals. 

A generalisation of tile LUS class of residual vectors is the LUF class. 1bese 
are disturbance estimators which are linear in Y. unbiased and which have 

dispersion matrices (J2Q which are not data-dependent and which are hence 

fixed. Butlt is clearly desirable that certain properties of (J2Q mirror those of 

(J2M. Following Abrahamse and Koerts (1971). Q is reqUired to be idcmpotent 
and of rank n-p. 

Let M(X) be the space spanned by the columns of X and let v be a LUF 
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residual vector. 'P'Y. 'P being of order n-pxn-p. So 

E('¥Y) = 0 ~ 'P'X = 0 

113 

So the columns of 'P' are elements of M(X),. the orthogonal complement of 
M(X). By the dimension theorem. if T is a linear transformation from the vector 
space V to the vector space W then the sum of the rank and nullity of T is equal 

to the dimension of V. I knce the sum of the rank of 'P and the dimension of the 

solution space of'P'X=O is n. so the dimension of M(X)' is n-p. Besides. dearly. 

E(vv') = E('l'')'Y''fI) = (J2'P''P = (J2Q ~ 'P'P'=Q 
Let K be that nxn-p matrix the columns of which are the eigcnvectors 

corresponding to the unit cigenvalues of Q and let P be that nxn-p matrix the 
columns of which arc the eigenvectors corresponding to the unit eigenvalues of 
M. Then Abrahamse and Kocrts show that the residual veetor 

K[K'MKr\f( 1.2) K'MY 
is a LUF vector satisfying weak optimality. and that it is unique. 
Consider a reformulation of the OLS model in which A is an rum-p matrix of 

rank n-p the columns of which span M(X)'. Xb must be an element of M(X) in 

OLS. But Xb is an clement of M(X) iIT A'Xb=O. Defining;' as a column vector of n
p Lagrange multipliers the estimation of b in OLS can be reformulated as the 

constrained optimisalion of the minimisation wilh respect to J3 of (y-XJ3),(y-XJ3) 

subject to A'XJ3=O. eqUivalent to the Lagrangian minimisation of (y-XJ3),(y-XJ3)-

2;'·A·XJ3. the solution being b. \0(;'."). By Harrison and Keogh(1984) 

Xb= [I - A(A'A)" I A')XJ3. \0(;'. ")= (A'A)" lA 'Y. \o(A. ")-N(O.(J2(A·A)-I) 

As \0(;'.") is linear in y. unbiased and has a fixed dispersion.malrix. it has 

an interpretation as a set of LUF residuals. Letting A=D(DD)" 1 \o(.~. ")= ((DD)" 1 

D'D(D'D)"I)"1 (DD)-IO'Y = D'D(D'D)"1 D'Y =D·. So. any LUF residual vector may 
be generated in this way and so any LUS residual vector may too provided that 
A·A=!. 

The process of finding LUF residual vectors differs very fundamentally from 
that for LUS resid uals. The matrix P is data dependent. For generating LUF 
residuals in a particular set of analyses we must specify typical matrices such 
that for anyone application this will be a good approximation. Since P is a basis 
for M(X). finding a typical P matrix is equivalent to finding a typical X matrix. 
Once the typical X matrix has been specified for any field. then given the 
nonslngularity of K·P. v is uniquely determined. The issue of choice of base does 
not even arise. 

A typical X matrix is not necessarily given however. Intuitively. indeed this is 
likely to be qUite unusual. Uut one case where it does exist is for slow trending 
time series which Thcil and Nagar (1961) argue is quite common. X. in this case. 
can be approximated by the eigenvectors of the matrix A .[qij) which Is of order 

nXn. where 

qii = 2 for all i d2 ..... n-ll. qli =1 for i e{l.nl and qlj=-1 for alll.j such that I i
j I = 1: all other elements of the matrix being zero. 

111ls is because the eigenvectors of A have a ·slowly changing" character. so 
X may behave like the eigenvectors of A. P is a matrix of eigenvectors of M 
corresponding to the unit eigenvalues of M. so it spans the orthogonal 
complement of the space spanned by X. because as has been shown KP'X=O. So 
P behaves like the eigenveetors corresponding to the n-p largest eigenvalues of A. 
Let the matrix. the columns of which are these eigenvectors be L. of order nxn-p. 
It follows that it is reasonable to choose L for the matrix K. and Q is thus LV. 

Von Neumann (1941) showed that the eigenvectors of A are given by hi = 
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\[(I.ci) [Cos\f(1t(i-I).2n) . Cos\f(31t(i-l).2n) •....... Cos \f((2n-I)1t(i-I).2n)] 

Cl = \r(n) • ci = \r(\f(n.2)) for alii E{2 .... n} 

corresponding to the eigen values 2[1 - Cos \f(1t(i-I).n) I . i E{l.. ... n}. Lis 
hence [hp+ 1 .... · ... hnl .' 

The theory of LUF residuals however relies on n bc1ng determined a priori 
and so the typical X matrix must be too. This is the major limitation of LUF 
residuals. A typical X matrix may not exist in a given field of learning. nut. more 
critically. the fact of the typical X matrix being determined a priori means that the 
analyst may not be influenced by the extent to which his X matrix satisfies the 
reqUirements to be "typical" in the given field of learning without undermining 
the statistical validity of the procedures. If he finds that the X matrix is 
completely different from that which he expected. ex_ ante. if he modifies his 
beliefs about what X matrix is "typical" in that field of learning. then it can no 
longer be assumed that n is fixcd and the theory of LUF residuals breaks down. 

Given the central role of disturbance estimators in economctric specification 
and misspecification testing. alternative disturbance estimators can clearly be 
applied to a battery of testing proccdures including tests for hcteroskedasticity. 
serial correlation. concavity. convexity. general non-linearity or structural ehange 
over time •. as well as to misspecification tests. Length being constralned. not all 
these applications can be examincd. 

Exact parametric tests of heteroskedasticity. using LUS residuals. were 
proposed by Theil (19711 and Phillips and Harvey (1973). the former using BLUS 

residuals. the latter employing recursive ones. If a2 = Var(fj) = a 2fijl then the 
null is that fij) is unity for all j and HA is that there exists some j such that fO) et 

1. For power studies. writers have confined themselves to more restricted forms 
of heteroskedastic1ty. 

Let the observations be ordered in non-decreasing values of a2j • according 

to an alternative hypothesis. Let a regression be run on the first and last m 
observations. 2m=:;n [2m<n. for n oddI. yielding residual vectors eI and e2 

respectively. The Goldfcld-Quandt test statistic is 
R = \f(e·2e2.e'IeI) = \f(e'E2e.e'Ele) • where E2 = \b(\a\e02(O .0.0 .Im)) . 

where El = \b(\a \c02(Im .0.0 .0)) • where Im is the identity matrix of order 
mXm. 

~ R = \f(cM'E2ME.C'M'EIME) 

But M'E2M and M'E 1 M are trivially idempotent 

~ e'2e2 - a2X2 m' e'I e 1 -a2x2 m 
e'IeI and e'2e2 are independent 

R-Fm •m 
Testing may hence be conducted. Discarding central observations has been 

found to increase power. for example by Phillips and I Iarvey, 
The procedures of Theil (1971) and Phillips and lIarvL"}' (1973) adapt this test 

for LUS residuals. represented by a vector w, As the discarding of thc central 
observations increases powcr. it follows that. for n-p even the central p 
observations be used as the base and for n-p odd. onc of the two possible sets of 
central p observations be used. In this way the disadvantage of LUS residuals 
(that observations in the base do not have corresponding residuals) can be 
mitigated. Ph1llips and lIarvey (1973. 1974) allow for the possibility of discarding 
more observations than are in the base: thereby increasing the number of 
possible bases. In the eontext of computatlonally expensive nLUS residuals this 
seems unlikely to be desirable. so Theil (1968, 1971) does not allow for this: the 
more possible bascs we consider the greater the computational cost. ThciJ then 
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suggests that a I3LUS residual vector be computed for each [one or two) 
admissible base. the one with the lower expected error sum of squares being 
selected. In this paper. the approach of Theil is initially followed. so two 
regressions are run; one on the observatons before the base [p elements) and one 
on the observations after it. yielding LUS residual vectors wl and w2 respectively. 

The ratio for either I3LUS or rccursive tests is then 
S = \[(w2'w2,wl'wl) 
depending on whether \f(wl.w2)are BLUS or recursive residual vectors. 

Clearly w2'w2 - cr2X2n.Wl'wl - cr2X2m. where wl and w2 are of length m and n 

respectively. 
E[wl'w2]=O 

w2'w2 and w!'wl are independent. because 

S-Fn •m 
and so testing may bc conducted by comparison with the critical values of 

an F n. m variate. 
Harvey and Phillips (1974) is an important discussion of the relative merits 

of these three tests. The I3LUS residuals have the least expected sum of squared 
estimation errors. but there is no theoretical reason why this should imply that a 
test based on thcm will be most powerful. The recursive residuals. on the other 
hand. arc easier to obtain. lIarvey and Phillips claim that tests based on 
recursive or BLUS residuals are more flexible than the Goldfeld-Quandt test as 
recursive or I3LUS residuals may be used with d~fferent orderings of the 
observations. while least squares reslduals may not. They however provide no 
theoretical or empirical support for this claim. Changing the order of 
observations changcs the set of admissable bases; but if onc set of LUS residuals 
is used with different orderings of the bases. then only the base in the frrst test 
will necessanly be admissable. Even if other bases are. by chance. admissable. 
the BLUS residual vectors they yield will not necessarily satislY weak optimality. 
It seems plaUSible. hence. that using different ordcrings without fresh bases may 
cause a loss of power. and the phenomenon may hence merit further study. 
Harvey and Phillips use the procedure of Imhof (1961) to compute the power of S 
under various alternative hypotheses. The procedure enables this to be done 
exactly. since S is a quadratic form in random normal variables. Thcy drew the 
following key conelusions. 

(1) For designing the most powerful test it is optimal to discard around max 
(P. \[(n.3)) central observations. this optimum being relatively flat. 

(U) The tests based on I3LUS residuals dominate those based on recursive 
residuals in power. but the dlffercnce is very small and probably does notjustify 
the extra computatonal cost of the former. 

(Hi) All conclusions are quite robust to the specification of the 
heteroskedastlcily. 

(iv) No overall conclusion may be drawn as to the relative power of those 
tests and the Goldfcld-Quandt test. 

Hamsey (1969) discusses a number of specification tests involVing LUS 
residuals. Only one is elaimed to be sensitive to simple heteroskedasticity. This is 
essentially a special case of I3artlett's M Specification Error Tesl [UAMSET). 
Defining zl",zn-p to be the coordinates of a vector of LUS residuals. z. the set of 

n-p LUS re&lduals is divided into t non-intersecting subsets. such that the 

residuals in the jth set have a sum of squares L:i and Nj elements arc in this set. 

Define 

S2j=\f(Lj,Nj)' s2 = \f(\i\suU=l.t.Njsll.n-p) • j c{l.. ... t} 

The null specified by Hamsey is that z2j - cr2x2r. j£[l ....... n-p} while HA is 
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zl-crj2x21. with crp not equal for all j. He shows that the test statistic 

n-p log s2 - \i\suO=l.t.Njlog s2 j) -X2t_1. 

and testing may hence be conducted. Unfortunately the power of this test 
may not be computed using the method of Imhof (1961). The spec1ficatlon of the 
null and alternative hypotheses is significantly different from that used by other 

wrtters and has the disadvantage that. as many misspec!fications imply z2i to be 

distributed as non-central X2. the test is not defined for these cases. Ramsey 
(1969) notes that this Is the case if there is functional misspec1ficatlon or 
underspec!fication. 

Brown. Durbin and Evans 0975) propose a test for structural change over 

time based on recursive residuals. Formally. the null is that f3 and 0 2 are 
constant over time. and HA is that they are not (although a variety of one-sided 

procedures could be devised if desired). Let the set of recursive residuals be 

{vt}.tt:{ptl.. .. n}. Two alternativc statistics may then be computed. known as the 
cusum and cusum squared test statistics. 

Wj \f(\i\su(t=p+ 1 ,j. Vtl. \I\su(t=p+ 1.n.vt2)) and 

\f(\i\su(t=p+ 1.j.vt2). \i\su(t=p+ 1.n,vt2)) 

respectively. for the jth observation. Consider a plot of Wj against j. Under 
the nulI. over time. It should be close to zero. Applying the tJ:eory of Brownian 

motion in statistical mechanics they showed that there is an a% probability that 
some point will be above line A or below line B. under the null where linc A goes 

through the pOints (P.+f(a)\r(ll-p)) and (n.3f[a)\r(n-p)) and line B goes through 

the points (p.-f(a)\r(n-p)) and (n.-3f(a)\r(n-p)). Valucs for f(a) were computed; 
notably f(0.05) = 0.948. A diagnostic test may thus be devised which rcjects the 
null if some portion of the plot is above line A or below line B. By simple gL'Omctry 

the equations of lines A and B may be deduced as Wt = f[a)\r(n-p) + \f(2f(a)(t-

p).\r(n-p)) and Wt = -f[a)\r(n-p) - \f(2f[a)(t-p).\r(n-p)) respectively. The approach 
for the cusum of squares test is similar. but bascd on a sHghtly different 
rationale 

\i\su(t=p+1.j,vt2) - X2j_p ~ \i\su(t=p+1.n.vt2)- X2n_p 

=-- Sj = \f(x1.xI x2l such that XI-X2j-p. X2-X2n_j 

~ Sj - f30-p.n-j). following Rao (1973). 

Rao observes that for a f3(p.q) varlate. It has an expectation of \f(P.p+q). It 
follows that E(sj) = \CO-p.n-p). So. if we consider a plot of Sj againstj It should be 
close to a line going through \fO-p.n-p) for allj. known as the mean value line. By 
simple geometry. the equation of the mean value line is. hence 

St = \f(t-p.n-p) 
Brown. Durbin and Evans (1975) show that for any required significance 

level. a. the probability that thc plot crosses either or both lines 

St=\f(t-p.n-p) ± Cord) 

Is cqual to a. They tabulatc valucs of Co and so a diagnostic test may hence 
be deduced. It L'Ould in principle be extended to other LUS residual vectors. the 
problem becoming statistically more difficult. however. Garbade (1977) in 
statistical simulalions concluded that the cusum of squares test was more 
powerful than the cusum test and that not even the former Is very powerful 
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against changes in p. 
A final application of alternative disturbance estimators, which uses LUF 

residual vectors, is to computing the distribution ofVon Neumann ratios. As the 
Von Neumann ratio is a linear transformation of the Durbin-Watson test statistic, 
this could either be regarded as an appplication to either misspecification or 
serial correlation testing. The exact distribution of the Von Neumann ratio for 
least squares residuals is data dependent although, given a particular X matrix, 
it may be computed exactly. 

Given a vector of LUS residuals, the distribution of the corresponding, Von 
Neumann ratio may be computed exactly. For n-p BLUS residuals the Von 

Neumann ratio is g = \f(\! \su(d=2,n-p, (u la- u I a_l)2).(n-p-l)e I'e I) = 

\f(u'lAul,(n-p-l)el'el) where A is the appropriate elementary matrix. Press and 

Brooks (1969) dcrived significance limits of g for n-p£{2 ... 60}, and showed that 
asymptotically, g-N(2,\f(4,n-p)), an asymptotic approximation valid for n-p at 
least around 60. Hence one may test for serial correlation as proposed by Theil 
(1971). 

It is in this application that writers such as Abrahamse and Louter (1971) 
would tend to argue that LUF residual vectors are especially appropriate. The 
difficulty in computing Von Neumann ratios lies in data-dependency not in 
whether the dispersion matrix of disturbance estimators is scalar or not. Since 
the BLUS residual vectors satisfy weak optimality In a more restricted elass than 
the LUF residual vectors of Abrahamse and Koerts (1971) It seems plausible that 
using LUF residual vectors will enta!l a gain In power, although the formal 
justification for this claim relies on Monte Carlo simulations. Besides, given a 
typical X matrix for a certain field, LUF residuals are uniquely determined, unlike 
BLUS reslduals. Given a time series where differences are small by comparison to 
the level predictor Variables, LUF reslduals may be derived by the procedure 
referred to. In this case, where A is as defined in the section on LUF residuals the 
Von Neumann ratio Is g' = \f(v'Av,v'v) Let ll .... .ln-p be the eigenvalues of K·AK. 

Then Koerts and Abrahamse (1969) show that g'=\f(\i\su(i=l,n

p,li~12), \I\su(i= l,n-p,~i2)) where ~ = (~I""'~n-pl. ~-N(0.(J2I). Let g be the 
orthogonal matrix the columns of which are the elgenvectors of A. By orthogonal 
dlagonalisation 

D=dlag[a 1 ..... anl=g·Ag. where a I" ... an are the elgenvalues of A. 

~A=QDQ' 

~K'AK=K'gDg'K 

But g is the matrix [hl ... hnl, K is the matrix [hp+I ....... hnl and hl ... hn are 

of unit length and pairwise orthogonal. So K·g=[O(n.-p)(p)I(n_p)) where 6(n-p)(p) is 

of order n-pxp and I(n-p) is of order n-pxn-p, being zero and identity matrices 

respectively. 

~ K'AK = [O(n-p)(p) I(n-p)) D \B(\A(O(n-p)(p).I(n_p))) 

~ K'AK = \b(\A \C02(O(p).O(n_p),O(n_p).J)) where J Is dlag[ap+ I ..... an) 

~ g' = \f(\i\su(l=p+ l,n,di~i2), \i\su(l=p+ l,n'~i2)) 
This is the Durbin-Watson upper bound duo apart from the multtplicative 

constant. Durbln-Watson tests may hence be conducted. This result also 
provides some explanation for why statistical slmulations have tended to suggest 
that the actual distribution of the Durbin-Watson test statistic is closer to du 
than dl' 

Abrahamse and Koerts (1971) ran some statistical simulations to compare 
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the power of this procedure with the BLUS one in serial correlation with slow 
trending time series. The former dominated the latter in power. The strength of 
the argument for the LUF test that follows from this is clearly however greatly 
blunted by the need in this proccdure to find a typical X matrix and hence a 

suitable n matrix. The procedure breaks down if one cannot be found. As the 

theory of LUF residuals is based on n being fIxed a priori it follows that the 
typical X matrix must be fixed in advance. This may be a quite unreasonable 
requirement, and so the allernative approach based on BLUS residuals may be 
preferred. 

Jonathan Wright 

Notes 
(1) The term estimator is used here in a nonstandard way, not to estimate a 
parameter in a probability distribution but to estimate a value taken on by a 

random vector, E. 

(2jThe variance-covariance matrix of a, a vector of cstimators of a random vector 

E is defined as \o(I. I )(a), E[(a-(j(a-c)'). This is again a non-standard practice, 
following logically however from (i). The matrix E[(a-E(a))(a-E(aJrl is termed the 
dispersion matrix of a, Veal. 
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